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OVERVIEW 

The overarching goals of the research project include advancing our understanding of strong 
correlation effects in Mott semiconductors and their response to electric fields. This is 
relevant to their eventual use as advanced semiconductors in microwave devices or high 
speed transistors where collective effects are exploited to design switches.The report presents 
our progress in studying electron transport mechanisms in doped SmNiO3. Upon electron 
doping via hydrogenation, a strongly correlated Mott insulating state is formed in the 
nickelate. Since the dopant is in ionic form, an electric field can be utilized to actuate a phase 
transition independent of temperature. This enables a new form of transistor device. It is 
therefore important to understand the carrier transport mechanism in the doped nickelate 
where carriers are strongly localized. We present a detailed study of carrier transport as a 
function of temperature along with description of the mechanisms in a strongly localized 
picture characteristic of Mott insulators. 

I.EXPERIMENTS 

The SmNiO3 (SNO) samples were synthesized by co-sputtering from Sm and Ni targets in 
Ar/O2 atmosphere onto a single crystal lanthanum aluminate as substrate [1]. The samples 
were then lithographically patterned with Pt electrode arrays with width ~ 250 μm and 
spacing ~ 500 μm. The samples were then annealed at 200∘ C in hydrogen atmosphere (5% 
H2 in Ar). During this process electron doping occurs via dopant incorporation into SNO 
lattice [2]. The hydrogenated SNO (H-SNO) sample was then loaded into a probe station for 
electrical measurements. The current voltage characteristics (I -V ) were measured at several 
temperatures between 77 K and 300 K . The sample resistance was determined from the 
zero bias slope of the I- V curves.  

II.RESULTS AND DISCUSSION 

The resistance of H-SNO film as a function of temperature is shown in Fig. 1.  

 



 
Figure 1: Temperature dependence of resistance of H-SNO showing an insulating 

behavior 
 

The resistance increases by six orders of magnitude as the sample is cooled down from 
300 K to 77 K and shows an insulating behavior. This increase in resistance with reduction 
in temperature can be viewed in the context of doped semiconductors and thus a possibility of 
electron hopping between localized states arises. Let us briefly look into various mechanisms 
leading to hopping transport. It is well known that localized states exist in the forbidden gap 
of doped semiconductors/disordered insulators. For a semiconductor, σ → 0 as T → 0 K. 
But at finite temperatures, electrical transport occurs by hopping of charge carriers between 
nearby localized states and this mechanism is known as nearest neighbor hopping. In such 
cases, the resistivity (ρ(T)) exhibits an activated behavior given by  

 

(1) 

whereρ0 is the prefactor and ΔE is the activation energy for hopping. However at low 
temperatures, it is energetically favorable for an electron to hop to a site that is closer in 
energy than the nearest neighbor leading to a mechanism known as variable range hopping 
(VRH) and is given by  

 

(2) 

whereρ1 is the prefactor, T0 is the characteristic temperature and p is the exponent dependent 
on the conduction mechanism. The type of VRH conduction is dependent on the details of the 
density of states (DOS) around Fermi energy (EF). It was shown by Mott [3] that for a 
constant DOS, p = 1∕(D + 1) where D is the dimensionality of the system. In three 
dimensions, p = 1∕4 and T0 is given by [4, 5]  



 

(3) 

whereN(EF) is the DOS near EFand ξ is the localization length. But when Coulomb 
interaction between charge carriers is taken into account, a gap appears in the DOS near 
EFand one can show that p = 1∕2. This mechanism is known as Efros-Shklovskii (ES) VRH 
in which T0 is given as [6]  

 

(4) 

whereϵ is the dielectric permittivity.  

 

 
Figure 2: a) Plot ofln vs 1∕T for H-SNO film to check for nearest neighbor 

hoppingtransport mechanism. b) Plot ofln vs T-1∕4for H-SNO film to check for 
Mott VRH. c) Plotofln vs T-1∕2for H-SNO film to check for ES VRH. d) RCDA 



of conductance shows a slopeof p = 1∕2 indicative of ES VRH mechanism for H-
SNO. 

 

For H-SNO samples, the resistance data shows a clear deviation from activated transport 
mechanism (Fig. 2a). The data shows a linear behavior for both Mott and ES VRH 
mechanisms (Fig. 2b,c). In such cases, the exponent p can be determined unambiguously by 
a method based on resistance curve derivative analysis (RCDA) [7]. The essence of this 
method is to calculate a parameter w(T) = , where the conductance G = 1∕R. After 
some algebra, it can be shown that  

 

(5) 

A log-log plot of Eqn. 5 yields the exponent p which is determined from the slope. Various 
transport mechanisms like NNH, ES VRH and Mott VRH correspond to value of p = 1, 1∕2 
and 1∕4 respectively. A plot of w is shown in Fig. 2d from which the slope is determined to 
be 1∕2. Thus the dominant mechanism in H-SNO over the entire temperature range is ES 
VRH signifying the presence of Coulomb interactions in the system. From a linear fit to 
Fig. 2c yields TES= 1.194 X 105 K and RV= 49.3 mΩ. Using Eqn. 4 and taking the 
dielectric constant of H-SNO to be ~ 5 [2], we determine ξ = 0.78 A which is much smaller 
compared to the lattice spacing of bulk SNO (0.3796 nm). Thus the carriers are strongly 
localized within a unit cell.  

 

 
Figure 3: Temperature dependence of resistance of SNO showing an insulating 

behavior 
 
 



 
Figure 4: a) Plot ofln vs 1∕T for SNO film to check for nearest neighbor hopping 

transportmechanism. b) Plot ofln vs T-1∕4for SNO film to check for Mott VRH. c) 
Plot ofln vsT-1∕2for SNO film to check for ES VRH. d) RCDA of conductance of 
SNO film shows a slope ofp = 1∕4 and 1 indicative of Mott VRH and activated 
transport mechanism respectively. 

 

In order to develop a better understanding of the transport properties of H-SNO, we 
performed electrical measurements on a SNO sample which was obtained by annealing H-
SNO to 573 K for 2 hours in air. Subsequently the sample resistance was measured as shown 
in Fig. 3. It is important to note that the resistance of SNO at 300 K drops to ~ 10 KΩ 
compared to ~ 20 MΩ for H-SNO. The sample exhibits 5 orders of magnitude change in 
resistance over the measurement temperature range. The plots of resistance for possible 
mechanisms like NNH and VRH are shown in Fig. 4a-c. We use RCDA to show that the 
transport is governed by activated type behavior (p = 1 in Fig. 4d) for T ≳180 K with an 
activation energy ~ 110 meV and Mott VRH (p = 1∕4 in Fig. 4d) at low temperatures. We 
find the characteristic temperature TM= 1.74 X 108 K which yields N(EF) = 1.2X1018 eV-

1cm-3. Thus we find that the transport mechanism is distinct for H-SNO in comparison to 
pristine samples. The transport mechanism in SNO switches from NNH to Mott VRH as the 



temperature is lowered similar to other crystalline and amorphous semiconductors [8–10]. 
However hydrogen incorporation into SNO has a distinct effect unlike in conventional 
semiconducting systems where hydrogen doping introduces compensation decreasing the 
carrier density. In H-SNO, hydrogen loses an electron which changes the valency state of the 
Ni3+to Ni2+. The proton (H+) then goes into lattice preferentially closer towards the ligands 
serving as a source of compensation. Earlier studies on H-SNO indicate that the 
hydrogenation process increases the bandgap of the system [2]. Thus one can picture the 
Fermi energy to be located deep in the forbidden band amidst the localized states (Fig. 5a) 
leading to a large increase in resistance. The H+ ions increase the disorder and thus correlation 
effects become important thereby leading to ES VRH as a dominant mechanism of carrier 
transport.  

 

 
Figure 5: a) Schematic representation of band diagram (energy vs DOS) of a 

disorderedsemiconductor with Fermi energy (dashed blue line) .Green lines 
indicates impurity states in thebandgap and blue circles represent electrons. The 
hopping of electrons between impurity states isrepresented by blue arrow. b) 
Comparison of TESfor various semiconductors H-SNO (this workindicted by open 
circle), SNO [11], Reduced graphene oxide (RGO) [12], hydrogenated 
graphene(Gr:H) [13], Si [14], Ge [15], GaAs/AlGaAsheterostructure (2DEG) [16], 
CdSe [17]. Carrierdensity in units of cm-3except for 2DEG, RGO and Gr:H (units of 
cm-2).  

 

In Fig. 5b, we compare TES of H-SNO with that of other semiconductors from literature. 
We find that for similar carrier densities, H-SNO exhibits a larger TES compared to other 
systems. This is clear from the variation of resistance (five orders change) over the entire 
temperature range (77 - 300 K). A large TES is directly correlated with the strong 
localization of carriers (Eqn. 4). The number density for H-SNO is estimated from a simple 
Drude model of conduction by comparing it with pristine sample. It is known that for a-Si 
films [18], the Coulomb interaction is stronger when the charge carriers are localized in band-
tail states which makes the distribution of these states to lie deep in the bandgap of the 



material. One can think of a similar scenario in the case of H-SNO which has a larger 
bandgap (~ 3 eV) and carriers are strongly localized.  

 

 
Figure 6: a) I -V characteristics of H-SNO film at various temperatures. The curves 

becomenon-linear for V ≳5 V. b) I -V characteristics of SNO film at various 
temperatures. The curvesbecome non-linear for V ≳5 V. c) Log-log plot I -V 
characteristics of H-SNO film for twodifferent temperatures (77 K and 300 K). 
The exponent α is also indicated for both low and highfields. d) Log-log plot I -V 
characteristics of SNO film for two different temperatures (77 K and300 K). The 
exponent α is also indicated for both low and high field. 

 

Finally we compare the I-V curves of SNO and H-SNO at high fields (V ≳5 V). As 
shown in Fig. 6a,b, both H-SNO and SNO display non linearI - V characteristics over entire 
temperature range. We find that the current is linear in voltage for V ≲5 V and exhibits I 
∝Vαbehavior at larger voltages (Fig. 6c,d). The exponent α increases with decrease in 
temperature for both H-SNO.In Fig. 7, α is shown as a function of temperature for both the 
samples. We find that α displays a larger variation from 1.1 to 2.5 for H-SNO samples 
which are strongly insulating whereas in the case of SNO α shows a much smaller variation 
(~ ). Any attempts to fit our data with conduction mechanisms like 
Schottkyemission, Fowler-Nordheimtunneling, Poole-Frenkel emission failed leaving us with 
a possibility of space-charge limited conduction (SCLC). Previous experiments on epitaxial 
SNO thin films [19] have shown power law behavior in I- V characteristics (α ~ 8) across 



the metal to insulator regime of SNO and the results were explained in terms of SCLC caused 
due to trap states located in the bandgap. Thus one can interpret the large increase in α in H-
SNO at low temperatures as being caused due to the dominance of trap states which localize 
free carriers thereby enter SCLC regime with α >2.  

To summarize, we have presented the transport measurements on H-SNO where the 
conduction mechanism is dominated by an interaction mediated hopping of charge carriers 
which are strongly localized in mid gap states.  

 

 
Figure 7: Comparison of α for H-SNO and SNO films over the temperature range 77 -

300 K. 
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